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A central problem in signal processing and communications is to design signals 
that are compact both in time and frequency. Heisenberg’s uncertainty principle 
states that a given function cannot be arbitrarily compact both in time and 
frequency, defining an “uncertainty” lower bound. Taking the variance as a measure 
of localization in time and frequency, Gaussian functions reach this bound for 
continuous-time signals. For sequences, however, this is not true; it is known that 
Heisenberg’s bound is generally unachievable. For a chosen frequency variance, we 
formulate the search for “maximally compact sequences” as an exactly and efficiently 
solved convex optimization problem, thus providing a sharp uncertainty principle for 
sequences. Interestingly, the optimization formulation also reveals that maximally 
compact sequences are derived from Mathieu’s harmonic cosine function of order 
zero. We further provide rational asymptotic expansions of this sharp uncertainty 
bound. We use the derived bounds as a benchmark to compare the compactness of 
well-known window functions with that of the optimal Mathieu’s functions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Suppose you are asked to design filters that are sharp in the frequency domain and at the same time 
compact in the time domain. The same problem is posed in designing sharp probing basis functions with 
compact frequency characteristics. In order to formulate these problems mathematically, we need to have 
a correct and universal definition of compactness and clarify what we mean by saying a signal is spread in 
time or frequency.

These notions are well defined and established for continuous-time signals [13,34] and their properties are 
studied thoroughly in the literature. For such signals, we can define the time and frequency characteristics of 
a signal as in Table 1. Note the connection of these definitions with the mean and variance of a probability 
distribution function |x(t)|2/‖x‖2. The value of Δ2

t is considered as the spread of the signal in the time 
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Table 1
Time and frequency centers and spreads for a continuous time signal x(t).

Domain Center Spread
Time μt = 1

‖x‖2

∫
t∈R

t|x(t)|2dt Δ2
t = 1

‖x‖2

∫
t∈R

(t − μt)2|x(t)|2dt

Frequency μωc
= 1

2π‖x‖2

∫
ω∈R

ω|X(ω)|2dω Δ2
ωc

= 1
2π‖x‖2

∫
ω∈R

(ω − μω)2|X(ω)|2dω

Table 2
Time and frequency centers and spreads for a discrete time signal xn as extensions of Table 1
[34].

Domain Center Spread
Time μn = 1

‖x‖2

∑
k∈Z

k|xk|2 Δ2
n = 1

‖x‖2

∑
k∈Z

(k − μn)2|xk|2

Frequency μω�
= 1

2π‖x‖2

∫ π
−π

ω|X(ejω)|2dω Δ2
ω�

= 1
2π‖x‖2

∫ π
−π

(ω − μω)2|X(ejω)|2dω

domain while Δ2
ωc

represents its spread in the frequency domain. We say that a signal is compact in time 
(or frequency) if it has a small time (or frequency) spread.

The Heisenberg uncertainty principle [13,27,28] states that continuous-time signals cannot be arbitrarily 
compact in both domains. Specifically, for any x(t) ∈ L2(R),

ηc = Δ2
tΔ2

ωc
≥ 1

4 , (1)

where the lower bound is achieved for Gaussian signals of the form x(t) = γe−α(t−t0)2+jω0t, α > 0 [9]. The 
subscript c stands for continuous-time definitions. We call ηc the time–frequency spread of x.

Although the continuous Heisenberg uncertainty principle is widely used in theory, in practice we often 
work with discrete-time signals (e.g. filters and wavelets). Thus, equivalent definitions for discrete-time 
sequences are needed in signal processing. In the next section we study two common definitions of center 
and spread available in the literature.

1.1. Uncertainty principles for sequences

An obvious and intuitive extension of the definitions in Table 1 for discrete-time signals is presented in 
Table 2, where

X
(
ejω

)
=

∑
k∈Z

xke
−jωk ω ∈ R, (2)

is the discrete-time Fourier transform (DTFT) of xn.
Using the definitions in Table 2 [34], we can also state the Heisenberg uncertainty principle for discrete-

time signals as

η� = Δ2
nΔ2

ω�
>

1
4 , xn ∈ �2(Z) with X

(
ejπ

)
= 0, (3)

where the subscript � stands for linear in reference to the definition of the frequency spread. Note the extra 
assumption on the Fourier transform of the signal in (3). This assumption is necessary for the result to hold.

Example 1. Take xn = δn + 7δn−1 + 2δn−2. It is easy to verify that |X(ejπ)| = 0.22 �= 0, which violates the 
condition X(ejπ) = 0. The linear time–frequency spread of this signal according to Table 2 is η� = 0.159 <
1/4.
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Fig. 1. X(ejω) is a periodic function defined on the unit circle. The figure shows the correspondence between τ(x) and the periodic 
frequency spread of the signal.

In addition to the restriction on the Heisenberg uncertainty principle, the definitions in Table 2 do 
not capture the periodic nature of X(ejω) for the frequency center and spread. In the search for more 
natural properties, we can adopt definitions for circular moments widely used in quantum mechanics [4] and 
directional statistics [18].

Definition 1. For a sequence xn, n ∈ Z, with a 2π-periodic DTFT, X(ejω) as in (2), the first trigonometric 
moment is defined as [25,26]

τ(x) = 1
2π‖x‖2

π∫
−π

ejω
∣∣X(

ejω
)∣∣2dω

(a)= 1
‖x‖2

∑
k∈Z

xkx
∗
k+1, (4)

where (a) follows from Parseval’s equality.

The first trigonometric moment was originally defined for probability distributions on a circle. With 
proper normalization, this definition applies also to periodic functions.

Definition 2. Using (4), the periodic frequency spread is defined as [4]:

Δ2
ωp

= 1 − |τ(x)|2
|τ(x)|2 =

∣∣∣∣ ‖x‖2∑
k∈Z

xkx∗
k+1

∣∣∣∣
2

− 1, (5)

where τ(x) is defined in (4). This definition makes only sense when τ(x) �= 0. If τ(x) = 0, we set Δ2
ωp

= ∞. 
Fig. 1 illustrates pictorially how this definition corresponds to the first trigonometric moment of the periodic 
signal X(ejω) (the figure is inspired from [8]).

The definition of Δ2
n remains unchanged as in Table 2. These definitions are summarized in Table 3. 

Using these definitions, Breitenberger [4] states the uncertainty relation for sequences as

ηp = Δ2
n Δ2

ωp
≥ 1

4 , for ‖x‖0 > 1. (6)

The condition ‖x‖0 > 1 avoids the case Δ2
n = 0, which would happen for xn = γδn−n0 .

1.2. Contribution

In this paper, using the definitions in Table 3, we revisit the Heisenberg uncertainty principle for discrete-
time signals. We address the fundamental yet unanswered question: If someone asks us to design a discrete 
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Table 3
Time and frequency centers and spreads for a discrete time signal xn using circular 
moments, where τ(x) is defined in (4).

Domain Center Spread
Time μn = 1

‖x‖2

∑
k∈Z

k|xk|2 Δ2
n = 1

‖x‖2

∑
k∈Z

(k − μn)2|xk|2

Frequency μωp
= 1 − τ(x) Δ2

ωp
= 1−|τ(x)|2

|τ(x)|2 = | ‖x‖2∑
k∈Z

xkx∗
k+1

|2 − 1

Fig. 2. Time–frequency spread of continuous vs. sampled Gaussians. The solid line shows the 1/4 Heisenberg bound which is achieved by 
continuous Gaussian signals (with definitions in Table 1), while the markers show the time–frequency spread (according to Table 3) 
of sampled Gaussian sequences. The question is if the gap between the two curves is inherited from the properties of sequences or 
sampled Gaussians are not optimal in discrete domain.

filter with a certain frequency spread (Δ2
ωp

fixed), can we return the sequence with minimal time spread 
Δ2

n? In other words, the problem is to find the solution to

Δ2
n,opt = minimize

xn

Δ2
n

subject to Δ2
ωp

= σ2(fixed).
(7)

In order to provide an insight on the uncertainty principle in the discrete-time domain, we do a simple test. In 
Fig. 2 we show the time–frequency spread of continuous Gaussian signals by the solid line on 1/4. This is the 
Heisenberg’s uncertainty bound which is achievable by continuous-time Gaussians. Further, using the defini-
tions in Table 3, we compute the time–frequency spread of sampled Gaussian sequences. According to Prestin 
et al. [26], the time–frequency spread tends to 1/4 as the frequency spread of Gaussians decreases. However, 
when the frequency spread is large, the values are far from the uncertainty bound. Two questions arise here; 
is the 1/4 uncertainty bound also tight for discrete sequences? and are sampled Gaussians the minimizers 
of the uncertainty in the discrete domain? Answers to these questions will be apparent if we can solve (7).

Definition 3. We call the solution of (7) a maximally compact sequence.

Framing the design of maximally compact sequences as an optimization problem, we show that contrary 
to the continuous case, it is not possible to reach a constant time–frequency lower bound for arbitrary 
time or frequency spreads. We further develop a simple optimization framework to find maximally compact 
sequences in the time domain for a given frequency spread. In other words, we provide in a constructive 
and numerical way, a sharp uncertainty principle for sequences, later shown in Fig. 6. We also show that 
the Fourier spectra of maximally compact sequences are in fact a very special class of Mathieu’s functions. 
Using the asymptotical expansion of these functions, we develop closed-form bounds on the time–frequency 
spread of maximally compact sequences.
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1.3. Related work

The classic uncertainty principle [13] assumes continuous-time non-periodic signals. Several works in the 
signal processing community also address the discrete-time/discrete-frequency case [19,6,24,20,15,11]. Our 
work bridges these two cases by considering the discrete-time/continuous-frequency regime.

Note that not all studies about the uncertainty principle concern the notion of spread. For example, the 
authors in [24] propose the uncertainty bound on the information content of signals (entropy) and [6] provides 
a bound on the non-zero coefficients of discrete-time sequences and their discrete Fourier transforms.

The discrete-time/continuous-frequency scenario has been recently encountered in many practical appli-
cations in signal processing. Examples include uncertainty principle on graphs [1], on spheres [14], and on 
Riemannian manifolds [8]. Studies on the periodic frequency spread can be found in [4] and [35]. The most 
comprehensive work on the uncertainty relations for discrete sequences is found in [26]. The authors show 
that 1/4 is a lower-bound on the time–frequency spread, which can only be achieved asymptotically as the 
sequence spreads in time. We provide sharp achievable bounds in the non-extreme case which match the 
results in [26] in the asymptotic regime.

This problem is similar to—although different than—the design of Slepian’s Discrete Prolate Spheroidal 
Sequences (DPSS’s). First introduced by Slepian in 1978 [30], DPSS’s are sequences designed to be both 
limited in the time and band-limited in the frequency domains. For a finite length, N in time and a cut-off 
frequency W , the DPSS’s are a collection of N discrete-time sequences that are strictly band-limited to the 
digital frequency range |f | < W , yet highly concentrated in time to the index range n = 0, 1, · · · , N−1. Such 
sequences can be found using an algorithm similar to the Papoulis–Gerchberg method. Note the difference 
of such sequences to the ones that we intend to design in our work; we do not impose any constraints on 
the bandwidth of the sequences in the frequency domain. Also, the ideas presented here are applicable both 
to finite and infinite length sequences. Moreover, we focus on the concentration of the signals in the time 
and frequency domain using the notion of variance.

2. Main results

The following theorem is the core of the results presented in this paper.

Theorem 1. For finding unit norm maximally compact sequences, it is sufficient to solve the following 
semi-definite program (SDP)

minimize
X

tr(TX)

subject to tr(J0X) = α

tr(X) = 1, X � 0,

(8)

where α = 1√
1+σ2 with σ2 the fixed periodic frequency spread. Further, Xopt, the solution to (8) has rank 

one and Xopt = xopt xoptT , with xopt the solution of (7). Matrices T and J0 are defined as

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . 0
22

12

0
12

22

0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, J0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . 0

. . . 0 1
2

1
2 0 1

2

1
2 0

. . .

0
. . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)
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Fig. 3. An example solution of (8). The output of the SDP in (8) with σ2 = 0.1 using cvx in Example 2. The gray curve in the frequency 
domain shows the difference from a fitted periodic Gaussian signal. The optimal value for Δ2

n is found to be 2.62 which results in 
a time–frequency spread of ηp = 0.262.

Proof. See Section 3.2. �
Remark 1. The SDP (8) is feasible; indeed we can always find a signal x with a certain frequency spread 
and norm one. Using this signal we can construct X = xxT which shows the feasibility of this problem.

The SDP in (8) can be solved to an arbitrary precision by using existing approaches in the optimization 
literature; for example using the cvx software package [10]. This gives a constructive way to design sequences 
that are maximally compact in the time domain with a given frequency spread.

Example 2. Take σ2 = 0.1 to be the fixed and given frequency spread of the sequence. We can use cvx
[10] to solve the semi-definite program (8) and find the optimal value of Δ2

n = 2.62. This results in the 
time–frequency spread of ηp = 0.262. The simple code in MATLAB is:

cvx_begin
variable X(n,n);
minimize(trace(T*X))
subject to
trace(J0*X) == 1/sqrt(1+0.1)
trace(X) == 1
X == semi-definite(n)
cvx_end;

Note that contrary to continuous-time signals, we cannot reach the 0.25 lower bound for sequences. The 
resulting sequence and its DTFT are shown in Fig. 3.

Note that the dual of the SDP (8) is [5, p. 265]:

maximize
λ1,λ2

αλ1 + λ2

subject to T − λ1J0 − λ2I � 0.
(10)

We will use the formulation of the dual problem many times in the rest of the paper.

Lemma 1. For maximally compact sequences, Δ2
n(x) changes monotonically with Δ2

ωp
(x).

Proof. The feasible region of the dual (10) is shown in Fig. 4. We can write (10) as

maximize
λ1,λ2

c

subject to λ2 = c− αλ1,

T − λ J − λ I � 0.

(11)
1 0 2
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Fig. 4. The feasible set of the dual problem (10) and the supporting line. As α increases, we need to elevate the line more to support the 
feasible set, which means that the optimal value of Δ2

n increases.

Note that α changes between 0 and 1 (see Fig. 4). For a fixed α, the maximum copt is found by elevating 
the corresponding line λ2 = c − αλ1 until it supports the feasible set (it is tangent to it). Since the feasible 
set is convex, as α grows (which means Δ2

ωp
decreases), we need a higher elevation of the line to support 

the convex set, thus copt (equivalently Δ2
n) increases. This phenomenon is later confirmed by the simulation 

results in Fig. 6. �
Although Theorem 1 provides a constructive way for finding maximally compact sequences, it does not 

specify the closed form for these sequences. One would be interested to see if—in analogy to continuous-
time—sampled gaussians are maximally compact? The answer is negative, as shown by the following 
theorem:

Theorem 2. The DTFT spectra, X(ejω) of maximally compact sequences are Mathieu’s functions. More 
specifically,

X
(
ejω

)
= γ0 · ce0

(
−2λ1; (ω − ω0)/2

)
ejμω, (12)

where |γ0| = ‖ce0(−2λ1; (ω − ω0)/2)‖−1, ω0 and μ are shifts in frequency or time and λ1 is the optimal 
solution of the dual problem (10). ce0(q ; ω) is Mathieu’s harmonic cosine function of order zero.

Mathieu’s functions—widely used in quantum mechanics [33]—are the solutions to Mathieu’s differential 
equation [2, §20.1.1]:

∂2y(ω)
∂ω2 +

(
a− 2q cos(2ω)

)
· y(ω) = 0. (13)

These functions assume an even (Mathieu’s cosine function) and odd form (Mathieu’s sine function). For 
some specific pairs (a, q), Mathieu’s functions can be restricted to be 2π periodic. Mathieu’s harmonic Cosine 
functions of order m are thus:

cem(q;ω) = ce
(
am(q), q;ω

)
, m ∈ N. (14)

For the proof of Theorem 2 and further insights on Mathieu’s functions, we refer the reader to Section 3.3.
Using the constructive method presented in Theorem 1, we can find the achievable (and tight) uncertainty 

principle bound for discrete sequences. This is shown and discussed more in Section 5 and Fig. 6. However, 
a numerically computed boundary may not always be practical, and even though the numerical solution 
exactly solves the problem, its accuracy may be challenged. Therefore, we characterize the asymptotic 
behavior of the time–frequency bound:
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Theorem 3. If xn is maximally compact for a given Δ2
ωp

= σ2, then

ηp = Δ2
n Δ2

ωp
≥ σ2

(
1 −

√
σ2

1 + σ2

)
. (15)

Further, for small values of σ2, maximally compact sequences satisfy

ηp = Δ2
n Δ2

ωp
≤ σ2

8

( √
1 + σ2

√
1 + σ2 − 1

− 1
2

)
. (16)

Proof. The proof for this theorem is provided in Section 4. �
This fundamental result states that for a given frequency spread, we cannot design sequences which 

achieve the classic Heisenberg uncertainty bound. We will see how this curve compares to the classic Heisen-
berg bound in Section 5.

The lower bound in (15) converges to 1/2 as the value of σ2 grows, and “pushes up” the time–frequency 
spread of maximally compact sequences towards 1/2 which is also an asymptotic upper bound on the 
time–frequency spread as Δ2

ωp
→ ∞; indeed, one may construct the unit-norm sequence x(ε)

n = ε δn+1 +√
1 − 2ε2 δn + ε δn−1, which verifies limε→0 ηp(x(ε)) = 1/2.
On the other hand, for small values of σ2, the upper bound in (16) converges from above to 1/4, thus 

“pushing down” the time–frequency spread of maximally compact sequences towards the Heisenberg uncer-
tainty bound 1/4 from above.

2.1. Finite-length sequences

The theory that we have provided so far holds for infinite sequences. For computational purposes, we 
have to assume finite length for the sequences in the time domain, which is not an issue if the sequence 
length is chosen to be long enough. As a side benefit, a length constraint on the sequence may be added 
without changing the design algorithm.

3. Proof of Theorems 1 and 2

Let us start with some properties of maximally compact sequences.

3.1. Properties of maximally compact sequences

In the definitions of time and frequency spreads in Table 3 we considered complex sequences and their 
DTFTs. In the following, we establish two lemmas that make the search for maximally compact sequences 
easier. In the first lemma (Lemma 2), we state that if someone gives us a complex sequence with a given 
time–frequency spread, we can always take the modulus and have a sequence with a smaller or equal 
time–frequency spread. This enables us to only consider real sequences as maximally compact sequences. 
In Lemma 3, we state that shifts in time do not affect the time–frequency spread of sequences. This lemma 
allows us to assume—without loss of generality—that the sequences are centered around zero in time.

Lemma 2. For any given sequence xk,

ηp
(
|x|

)
≤ ηp(x).
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Proof. Let xk be a sequence with a given time spread Δ2
n(x). Obviously,

Δ2
n(x) = Δ2

n

(
|x|

)
.

Moreover,

Δ2
ωp

(|x|) =
∣∣∣∣
∑
k∈Z

|xk||xk+1|
∣∣∣∣
−2

− 1

≤
∣∣∣∣
∑
k∈Z

xkx
∗
k+1

∣∣∣∣
−2

− 1 = Δ2
ωp

(x). �

Recall from Lemma 1 that for maximally compact sequences Δ2
n changes monotonically with Δ2

ωp
. Thus, 

it is equivalent to fix either one of Δ2
n or Δ2

ωp
, and optimize with respect to the other.

Lemma 3. If x is a maximally compact sequence, then xk−μn(x) is also maximally compact. For non-integer 
μn, xk−μn

is a shorthand for since resampling on a grid shifted by μn in the time domain.

Proof. As μn is not necessarily an integer, we can use the Parseval’s equality to show that the time center 
and spread is not affected by arbitrary shifts. These easy computations are left to the interested reader 
(they can be found in [22]). Thus, if x is a maximally compact sequence, then xk−μn(x) is also maximally 
compact (note that time shift does not change the frequency characteristics of the sequence). �
Remark 2. Using Lemmas 2 and 3, we only consider real sequences x, with μn(x) = 0 and ‖x‖2 = 1. Later in 
Theorem 2 we show that maximally compact sequences are Mathieu’s cosine functions, which have strictly 
positive inverse Fourier transforms. This enables us to state that maximally compact sequences are real 
sequences up to a shift, scale or modulation.

3.2. Proof of Theorem 1

By using Lemmas 2 and 3, we can write problem (7) as

Δ2
n,opt = minimize

xn

∑
k∈Z

k2x2
k

subject to
∑
k∈Z

xkxk+1 = 1√
1 + σ2

,

∑
k∈Z

x2
k = 1.

(17)

We can rewrite (17) in matrix form as a quadratically constrained quadratic program (QCQP) [5, p. 152]:

minimize
x

xTTx

subject to xTJ0x = α,

xTx = 1,

≡

minimize
x

tr(TxxT )

subject to tr(J0xx
T ) = α

tr(xxT ) = 1,

(18)

where T and J0 are defined in (9) and α = 1/
√

1 + σ2. Replacing xxT by X, we can write equivalently
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minimize
X

tr(TX)

subject to tr(J0X) = α

tr(X) = 1

X � 0, rank(X) = 1.

(19)

We further relax the above formulation to reach the semi-definite program

minimize
X

tr(TX)

subject to tr(J0X) = α

tr(X) = 1, X � 0.

(20)

In Lemma 4 we show that the semi-definite relaxation is tight. This finishes the proof for Theorem 1. �
Lemma 4. The semi-definite relaxation (SDR) from (19) to (20) is tight.

Proof. Shapiro and then Barnivok and Pataki [29,3,23,16] show that if the SDP in (19) is feasible, then

rank
(
Xopt) ≤ ⌊

(
√

8m + 1 − 1)/2
⌋
, (21)

where m is the number of constraints of the SDP and Xopt is its optimal solution. For our semi-definite 
program in (20), m = 2. Thus, (21) implies that the solution has rank 1. Using this fact, one can see 
that the semi-definite relaxation is in fact tight. Recall from Remark 1 that problem (8) (and also (19)) is 
feasible. �
3.3. Proof of Theorem 2

We start by problem (8) and its dual (10).

Lemma 5. For the primal problem (8) and the dual (10), strong duality holds.

Proof. For a semi-definite program and its dual, if the primal is feasible and the dual is strictly feasible, 
then strong duality holds [31,32].

We saw in Remark 1 that the primal problem (8) is feasible. For the dual, one can use the Gershgorin’s 
circle theorem and show that a sufficient condition for T −λ1J0 −λ2I � 0 to hold is λ2 < −λ1 and λ1 > 0. 
Thus, the dual problem is strictly feasible. �

Thus, for finding the time–frequency spread of maximally compact sequences, solving the dual problem 
suffices. If a sequence is a solution to the dual SDP problem (10), the dual constraint is active. Therefore, 
maximally compact sequences lie on the boundary of the quadratic cone

T − λ1J0 − λ2I � 0.

A maximally compact sequence x is thus solution of the eigenvalue problem

(T − λ1J0)x = λ2x, (22)

where λ1 and λ2 are the dual variables of the SDP problem. λ2 is also the minimal eigenvalue of T − λ1J0
with x the associated eigenvector (this can be also seen by forcing the derivative of the Lagrangian in (18)
to zero).



462 R. Parhizkar et al. / Appl. Comput. Harmon. Anal. 38 (2015) 452–468
This explicit link between the dual variables and the sequence, yields a differential equation for which 
the DTFT spectrum of maximally compact sequences is the solution. In the DTFT domain (22) becomes 
(expanding the matrix multiplications)

X ′′(ejω) +
(
λ2 + λ1 cos(ω)

)
X
(
ejω

)
= 0, (23)

which is Mathieu’s differential equation (13). Taking into account the periodicity of (23), it appears that not 
all pairs of parameters (a, q) will lead to a periodic solution. Mathieu’s functions can be restricted to be 2π
periodic. The solutions of Mathieu’s harmonic differential equation—Eq. (13) with a 2π-periodic solution 
y—are defined as

Mathieu’s harmonic Cosine (even, periodic) cem(q;ω) = ce
(
am(q), q;ω

)
, m ∈ N. (24)

Mathieu’s harmonic Sine (odd, periodic) sem(q;ω) = ce
(
bm(q), q;ω

)
, m ∈ N

+. (25)

It is immediately visible that the spectrum of maximally compact sequences may only have the form

X
(
ejω

)
=

{
γ0cem(−2λ1;ω/2) + γ1sem(−2λ1;ω/2) for m ∈ N

+,

γ0cem(−2λ1;ω/2) for m = 0,
(26)

for any constants γ0 and γ1 such that ‖X(ejω)‖ = 2π. More specifically, for any λ1 ≥ 0, the dual SDP 
problem can be posed and any solution would have the form (26).

Characteristic numbers of Mathieu’s equation are ordered [7, p. 113], such that for λ1 > 0,

a0(−2λ1) < a1(−2λ1) < b1(−2λ1) < b2(−2λ1) < a2(−2λ1) < · · · .

By (13) and with the substitution ω → ω/2 one obtains am(−2λ1) = 4λ2. Because λ2 is the minimal 
eigenvalue, we conclude that m = 0.

Note that this result validates the one in [12] which stated that asymptotically Mathieu’s functions 
minimize the time–frequency product. With a different approach, we can establish that only Mathieu’s 
harmonic cosine of order 0 minimizes this product for any given frequency-spread.

4. Proof of Theorem 3

Let us start by proving the lower bound.

4.1. Lower bound (15)

In order to prove the lower bound (15) we first provide the following two lemmas.

Lemma 6. Consider the sequence ak as follows with θ, ν > 0

ak+1 = (k + 1)2 + θ − ν

ak
. (27)

The sequence ak is positive for k ≥ k0 as soon as ak0+1 ≥ ak0 > 0.

Proof. Note that

ak+2 − ak+1 = 3 + 2k + ν
ak+1 − ak
ak+1ak

. (28)

Thus, by induction, the sequence is positive as soon as ak0+1 ≥ ak0 > 0 for some k0. �
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Lemma 7. If

λ2 < 1 −
√

1 + λ2
1, (29)

then P = T − λ1J0 − λ2I � 0.

Proof. Note that if λ1 = 0, then the matrix P is positive-definite with the given condition. In the proof we 
will thus assume that λ1 �= 0.

Consider the following tri-diagonal matrices P 1 and P 2:

P 1 =

⎡
⎢⎢⎢⎢⎣

1 − λ2 −λ1/2 0
−λ1/2 4 − λ2 −λ1/2

−λ1/2 9 − λ2
. . .

0
. . . . . .

⎤
⎥⎥⎥⎥⎦ , P 2 =

⎡
⎢⎢⎢⎢⎣

0 − λ2 −λ1 0
−λ1/2 1 − λ2 −λ1/2

−λ1/2 4 − λ2
. . .

0
. . . . . .

⎤
⎥⎥⎥⎥⎦ . (30)

Call I the set of eigenvalues of P , I1 the set of eigenvalues of P 1 and I2 the set of eigenvalues of P 2. It is 
trivial to see that I = I1 ∪ I2.

We show that if condition (29) is satisfied, then both P 1 and P 2 have positive eigenvalues.

1. P 1: Sylvester’s criterion states that a symmetric matrix is positive definite if and only if its principal 
minors are all positive.1 As P 1 is symmetric, we can use Sylvester’s criterion on it. We use Gaussian 
elimination on the matrix P 1 to compute its principal minors

PU
1 =

⎡
⎢⎢⎢⎣

1 − λ2 −λ1/2 0
0 s2 −λ1/2

0 s3 −λ1/2

0 0
. . . . . .

⎤
⎥⎥⎥⎦ , (31)

where

sk+1 = (k + 1)2 − λ2 −
λ2

1
4sk

, k ≥ 1.

This satisfies the induction formula in (27). Thus according to Lemma 6, the principal minors of PU
1 (and 

so P 1) are positive as soon as s2 ≥ s1 > 0. This is equivalent to 1 −λ2 > 0 and 4 −λ2− λ2
1

4(1−λ2) ≥ 1 −λ2, 
i.e., λ2

1 ≤ 12(1 −λ2), which is a weaker condition than (29). Therefore, P 1 is also positive semi-definite.
2. P 2: We can decompose P 2 as

P 2 =

⎡
⎢⎢⎣

2 0
1

1
0

. . .

⎤
⎥⎥⎦×

⎡
⎢⎢⎢⎢⎣

0 − λ2/2 −λ1/2 0
−λ1/2 1 − λ2 −λ1/2

−λ1/2 4 − λ2
. . .

0
. . . . . .

⎤
⎥⎥⎥⎥⎦ = D × P

(s)
2 . (32)

Note that both D and P (s)
2 are symmetric. Also observe that the eigenvalues of P 2 and P (s)

2 are equal. 
Thus, it suffices to consider the eigenvalues of P (s)

2 ; If P (s)
2 is positive-definite then all the eigenvalues 

of P 2 are positive.

1 For an infinite matrix that can be regarded as the matrix of a bounded operator in �2, one can show that Sylvester’s criterion 
still holds, i.e., the quadratic form is non-negative definite if and only if all the finite principal minors of the matrix are positive. 
Note that we consider ‖x‖2 = 1, thus x ∈ �2.
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Again using Gaussian elimination on P (s)
2 results in

P
(s),U
2 =

⎡
⎢⎢⎢⎣
−λ2/2 −λ1/2 0 0

0 s1 −λ1/2
0 s2 −λ1/2

0 0
. . . . . .

⎤
⎥⎥⎥⎦ , (33)

where s1 = 1 − λ2 + λ2
1/2λ2 and sk has the following form sk+1 = (k + 1)2 − λ2 − λ2

1
4sk , k ≥ 1. This 

again satisfies the induction formula (27). Therefore, it suffices to show that λ2 < 0 and s2 ≥ s1 > 0. 
We show that under condition (29), this is true. In order to satisfy s1 > 0, we need 1 −λ2 +λ2

1/2λ2 > 0, 
which is equivalent to λ2 < 1

2 (1 −
√

1 + 2λ2
2). This is a weaker condition than (29).

Further, in order to satisfy s2 > s1, we need

s2 − s1 = 3 + λ2
1

4s1λ2
2

(
λ2

2 − 2λ2 − λ2
1
)
≥ 0.

Thus, it is enough to have λ2
2 − 2λ2 − λ2

1 ≥ 0. That is λ2 ≤ 1 −
√

1 + λ2
1, which is the bound pro-

vided in (29). Putting these together, we can conclude that under condition (29), the matrix P is 
positive-definite. �

Note that condition (29) gives a sufficient (but not necessary) condition on the feasible set of the dual 
problem (10). Thus, it provides a lower bound for the maximum value of the dual. Consider the restricted 
dual problem

maximize
λ1,λ2

αλ1 + λ2

subject to λ2 < 1 −
√

1 + λ2
1

(34)

The solution to this problem is simply 1 −
√

1 − α2. If we rewrite α in terms of σ2, we finally have

Δ2
n,opt ≥ 1 −

√
σ2

1 + σ2 .

This concludes the proof for the lower bound.

4.2. Upper bound (16)

It is easy to see that for small values of σ2 (equivalently α closer to 1), the maximum of the dual 
problem is achieved for large values of λ1 (remember that λ1 needs to be positive). We saw in 3.3 that for 
maximally compact sequences (i.e. sequences that result in the maximum of the dual problem) we have 
λ2 = 1/4 a0(2λ1) (note that a0(−q) = a0(q)). McLachlan in [17] shows that for large enough values of q, 
we have

a0(q) = −2q + 2q 1
2 − 1

4 − 1
32q

−1
2 − 48

27 q
−1 − 848

217 q
−3
2 − 4, 752

220 q−2 − 126, 752
220 q

−5
2 − · · ·

= −2q + 2q 1
2 − 1

4 − 1
32q

−1
2 + O

(
q−1). (35)

Thus, we have for large q,

a0(q) ≤ −2q + 2q 1
2 − 1

. (36)
4
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Fig. 5. The characteristic number a0(q) of Mathieu’s function together with its upper bound. In order to plot on a log scale, the 
negations are plotted.

The values for a0(q) and its upper bound are shown in Fig. 5. In order to be able to plot on a log scale, 
their negative counterparts are plotted.

After replacing q by 2λ1 and a0(2λ) by 4λ2 in (36), we have

λ2 = 1
4a0(2λ1) ≤ −λ1 + 1√

2
√

λ1 −
1
16 . (37)

Because this set contains the original feasible set of the dual problem, it will give an upper bound on the 
optimal value of the dual. In other words, Δ2

n ≤ σ2
r , where

σ2
r = maximize

λ1,λ2
αλ1 + λ2

subject to λ2 ≤ −λ1 + 1√
2
√

λ1 −
1
16 .

(38)

It is easy to see that the maximum of (38) is achieved for λ1 = 1
8(1−α)2 . Replacing λ1 in (38) and using 

the fact that Δ2
n,opt ≤ σ2

r , leads to

Δ2
n,opt ≤

1
8

( √
1 + σ2

√
1 + σ2 − 1

− 1
2

)
. (39)

5. Simulation results

In order to show the behavior of the results obtained in Theorems 1 and 3, we ran some simulations. 
For this, we assumed that the designed filter is finite length with 201 taps in the time domain. The length 
is long enough not to pose restrictions on the solution for the considered frequency spreads. For smaller 
frequency spreads, we can increase the length of the sequence. For different values of Δ2

ωp
= σ2, we solved 

the semi-definite program (8) using the cvx toolbox in MATLAB.
The resulting values of Δ2

n were then multiplied with the corresponding Δ2
ωp

to produce the time–
frequency spread of maximally compact sequences. The time–frequency spread of maximally compact 
sequences versus their frequency spread is shown with the solid curve in Fig. 6. This means—numerically—
that any time–frequency spread under this curve is not achievable. The dotted line in this figure shows 
the classic Heisenberg uncertainty bound. Comparing the two curves shows the gap between the clas-
sic Heisenberg principle and what is achievable in practice. The dashed lines represent analytical lower 
and upper bounds for the time–frequency spread of maximally compact sequences (found in Theo-
rem 3).
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Fig. 6. New uncertainty bounds. The solid line shows the results of solving the SDP in (8). The dotted line shows the classic Heisenberg 
uncertainty principle. The dashed lines show the analytic lower and upper bounds found in Theorem 3.

Fig. 7. Time–frequency spread of common FIR filters. By changing the length of the filters in time, we compute the time and frequency 
spreads for each type of filters. For small values of the frequency spread, Gaussian filters are good approximations of Mathieu’s 
functions (as shown also in [26]).

Further, to give an insight on how the time–frequency spread of some common filters compare to that 
of maximally compact sequences, we plot their time–frequency spread together with the new uncertainty 
bound in Fig. 7. By changing the length of each filter in time, we can find its time and frequency spreads 
which results in a point on the figure. We observe that as shown by Prestin et al. in [26], asymptotically 
when the frequency spread of sequences are very small, sampled Gaussians converge to the lower bound for 
maximally compact sequences.

6. Conclusion

We showed that for discrete-time sequences, contrary to continuous-time signals, the classic Heisenberg 
uncertainty bound is not always achievable and the uncertainty minimizers have a large gap from this 
bound. We constructed an optimization framework for finding the uncertainty minimizers which we refer to 
as the “maximally compact sequences”. This framework allows one to find—numerically and efficiently—the 
most compact sequence in time with a desired frequency spread. We further showed that the discrete-time 
Fourier transform of these sequences is a very special class of Mathieu’s functions. We also proved analytic 
bounds on the time–frequency spread of discrete sequences. Maximally compact sequences can serve as 
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optimal probing windows (similarly to the ones shown in Fig. 7) in several signal processing applications. 
Furthermore, the connection provided between the solutions of the semi-definite program and Mathieu’s 
functions, also enables the approximation of Mathieu’s functions with arbitrary accuracy.
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